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FOREWORD
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programming problems. Theory, usage notes and examples are included in the
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CHAPTER i

WOLFE'S METHOD FOR QUADRATIC PROGRAMMING

Wolfe's quadratic programmming method' is based on solving a system of linear

relations subject to complementarity conditions. The linear system (without the

complementarity conditions) can be solved by the simplex method of linear

programming. The pivoting rules of the simplex method can be restricted so that

the complementarity conditions are met. When the quadratic form in the objective

function is positive definite (for a minimization problem) the pivoting

restrictions do not prevent the simplex method from solving the linear system.

The linear system is based on the Karush-Kuhn-Tucker conditions (or Lagrange

multiplier rule) for the problem to be solved. Let this problem be:

minimize 1/2 [T x ][ "1 Q2] X JL P2T][]41. CLQ12 r Q22] x2l I2

subject to the constraints

xI > 0 (nI variables),

x2 unconstrained (n2 variables),

[A 11 A12] b1 (in, constraints),

X 21

[A2, A 22][xj b 2 (mn2 constraints).

The cons-tant term C is included for evaluation purposes only, it does not

affect the minimizing point. If there are no unconstrained variables (n2 = 0)

5
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the matrix Q 11 Qlj2reduces to QII and A =A 11  A1 2]reduces toAll]

Similar interpretations apply when n I = 0, mI = 0 or m2 = 0. Inequalities apply

componentwise; i.e., xI > 0 is equivalent to xl. > 0, j = 1,... ,n 1 . Q is positive

definite.

Introduce Lagrange multiplier vectors K for the constraint x 1 > 0 and XI

and X 2 for the other constraints, and form the Lagrangian

L =1/2 [xlT T2] 11 Q12 ] x+T p) T Cxi] +C

12 2 x 2

from which, by the Lagrange multiplier rule for inequality constrained problems,

we get the linear conditions

iK x

+~ XT([ A2]T b1

i 1 2  Q2 2  X + [A 1  A2 2T] + ] 2+-- 0,

C2. 2 2 1 2

along with the original constraints

1 16
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xl > 0,

L 2J

[A 21  A 2 2][X1bl]

the sign constraints on the multipliers for the inequalities

K1 !. O,

Kl <~ 0,

and the complementary slackness condition

K T 
A. + X T(bl Al 21 -b\+ X T([A A-2-01 1 1~ ± 2  1), 2 \ 2 1  

A 2 2 jT j ]~

Since each of the nI + mI + m2 terms in this sum is nonpositive by the constraints,

each must individually vanish:

K j = 0 or x 0, J n,

etc.

An alternate phrasing of this system of linear inequalities and equations can

be made if we introduce auxiliary vector variables K2 , S1 and S2

Find a solution to:

H 7
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1 0 00 Qll Q1 2 A11 A21 K

0 o 0 0 Q11 Q22  All A2  K2  --P2

00 1 0 All A1 2  0 0 S b(1

0 0 0 I A2 A2 2  0 0 S2  b2

x1

x2

L 2

K1 < 0, K2 = 0, S1 > 0, S = 0, x1 > 0, 1I > 0 (2)

and
KT x 0, s( ) o (3)1 1=, 1r~~

(The complementary slackness conditions (3) again require each term in the

scalar products KC x, and ST A1  to vanish.) If we ignore the complementary

slackness conditions, we can solve (1) and (2) by minimizing a penalty function

nl n2 ml m2

P r max{O'K 1+ jl 2 .j + =I max{-S 0}+ Z l (Sj

j l {-x ,O J j=l ljax 2

jl max {-j a +x {-ma ,01

Subject to (1) (and no sign constraints). The minimum value of P is 0 if and

only if (1) and (2) are consistent. Of course, it is not necessary to weight all

the sign constraint violations equally. For example, we could replace Is2~j by

max{-a S2j , b S2j} where a and b are positive. Changing the weights in this

manner does not affect the equivalence of the consistency of (1) and (2) to the

minimum being zero. A slightly different procedure is normally used (in a

simplex method Phase I). The identity matrix in the first (nI + n2 + nI + m2)

columns is used as an initial basis for the primal simplex method, any constraint

violations resulting therefrom are penalized, and sign constraints are retained

8
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in such a way that the penalty function is linear. For example, if b2j > 0,

S2j = b2j in the initial basic solution. The term "-" + S2j + "- appears in the

penalty and the restriction S2j > 0 is imposed; S2j is termed an "artificial

variable" in this case. (If b2j were negative, the penalty would be -S2j and

S2j kept nonpositive.) For SI the treatment is slightly different. If blj > 0,

set SIj = blj , with no penalty. If blj < 0, divide Sl, into the sum of a

slack variable SIj (unpenalized, nonnegative) and an artificial variable Slja

(penalized, nonpositive), set to blj initially. This procedure is, however,

equivalent to changing the weights in P. Using b2 j > 0 again as an example, we

could change the weighting so that the penalty on S2j changes from IS2j to

max{(--)S2j, S2j} and in practice we could replace - by a suitable large positive

quantity M.

It is not actually necessary to use a linear cost functional. With a little

care in programming, the usual simplex method can handle cost functionals like P.

The linear programming code LINOPT2 uses the dual simplex method to solve problems

of maximizing a linear functional subject to upper and lower bounds on all

variables and constrained quantities. The problem of minimizing P subject to (1)

is the dual of such a problem, which could be solved using LINOPT, with the

effect of minimizing P subject to (1) by the primal simplex method.

Let us now consider the complementary slackness conditions (3). In terms of

the primal simplex method, they can be enforced by ensuring that Slj and its

complementary variable Xlj (Klj and x1 j) are not simultaneously basic. This is

an easily enforced pivoting restriction. Unfortunately it is too strong to be

applied to minimizing P subject to (1) directly: the algorithm may terminate

with P > 0 even though (1), (2) and (3) are consistent. We get around this

difficulty by using a phase I/phase II procedure. Suppose we split K1 into a

multiplier K M 
, subject to complementary pivoting restrictions, and an artificial

variable K1 , not so restricted: K1 = K1 + K1 . Since Klj and Ki cannot both

be basic, one of them is always zero and nonbasic.

We can let KlJ be whichever of them is basic (if one is) and keep track of

whether this is KI a or Kl m.

9
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Suppose now that we have a basic feasible solution to the constraints on x.

Then

[1 0 Al1  A 12 1 S1  b 1

I A2 1 A22] S2 b2i

Xl

x2

S1 > 0, S2 =0, x1 > 0

Extend this basis to the constraint matrix for (1) by making Ka and K2 basic. If

we now minimize ' = IKlI + Z IK2j subject to (1) and
j=l j=l

K1 = K1 + K, K < >0,S =0, X > 0 and the complementary

a 1+ .0, S1 > 0, S2 = ,X1

pivoting restriction, the minimum will be zero, and we will have solved (1), (2)

and (3). (The proof of this fact requires the positive definiteness of Q.)

If we wish to enforce the sign constraints by penalty terms added to P' these

terms must be so heavily weighted that no change of basis that reduces P' can

introduce sign constraint violations.

The phase I is to find the initial basic feasible solution. It is not

necessary to work on a smaller problem using only the [I A] part of the full

coefficient matrix [ 0 Q A If we allow K, and K2 to be basic and

unconstrained in phase I, they will be basic throughout phase I and the initial

basis inverse for Phase II will be the final basis inverse for phase I.

Phase I problem:

ml m2  nl Ml
minimize PI M E max{-Slj,O} + E 1S2j1 + Z max{-xl.,O} + Z max{-Xlj,O'

J=l j=l j=l j=l

subject to:

10
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K

AT AT K2  = -P2

Q11  Q22  21 21•0 I 0 0 QI2 Q22 AIjr A2  S1 -P

0 0 I 0A A 2 0 0 S bI

0 0 0I A-1 A22 0 0 x1 b2

x
2

L2

where M >> 1. Since M scales out of the problem it is not actually needed here.

It is included as part of the setup for phase II. A similar comment applied to

the penalty on )1 which remains nonbasic and zero throughout phase I (and could

therefore be ignored). Starting basic variables are Kl, K2 , S1 and S2 . The

program actually sets up and solves the dual to this problem. Let k 1 be a vector

of variables dual to Kl, k2 dual to K2 ,cI dual to Sl, a2 dual to S2 ,  1 dual to

Xl, C' dual to x2 , Z, dual to X and Z2 dual to X2. For both phases the dual

variables are related by the transpose of the coefficient matrix:

kI  I 0 0 0

k2  0 I 0 0

0l 0 0 I 0 kI

a2 0 0 0 1 k

AT T
.*1 i ll Q12 AI1 21 4

E2 Q1 TQ 22  ArA2 2

1l All A12 0 0

Z2 A2 1  A22  0 0

L ii
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The dual phase I problem is to maximize z = [-pT _p2T blT b]-k

* subject to the bounds: k 2

L2J

k!  0, k2 
= 0, -M < a < ,M< 2 < M

-M < 1 < O, 2 0, -M < O, < = 0

1-1 2

(The bounds on ki and Z2 are obviously always satisfied in phase I.)

The objective function is defined by the right-hand side of (1). The bounds are

defined by the penalties in P the bounds for a dual variable deriving from

the penalties on the corresponding variable. Violation of nonzero bounds in

phases I and II are ignored: they can be made to go away by increasing the penalty

on the appropriate variable and we could have set up the penalty function in this

way in the first place. Furthermore, ignoring violation of nonzero bounds yields

a more efficient procedure.

Assuming that phase I ends with feasibility shown, we start phase II by

changing the penalty from PI to

n n2 n I

l = + E + E I + E max f0, KMj= j=l j=l j

or equivalently, changing the bounds on k and k For k2 this is easy:

-1 < k2  1 1, but for kl, setting the bounds is complicated by the implicit
m+a

handling of the split of K1 into K 1 +, 1 . Let us start by making each artificial
avariable K j basic, and treat kj as its dual, with bounds -1 < k j 1. Then klj

will initially be either +1 or -1 (depending on the sign of K a). Ordinarily,
a i

without the pivoting restriction, if k = k = -1, the lower bound (zero) onkm  a k a  j
km =a = k would be violated, and we could pivot km into the basis withlj ij hjewbculspvoth
value zero, with no change in the basis inverse matrix. With the pivoting

restriction, we can still do this if E is not basic (and zero--but it will be
lj

zero if basic because we ignore violation of nonzero bounds). Since we want to

reduce artificial variables to zero, we might as well do so at the start. Thus

the initial setup of bounds on kI are: r. < klj : 1

where rj -i if is basic at the end of phase I,

r = 0 if is nonbasic at the end of phase I.

12
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In proceeding through phasell, we should interpret k as dual to km as soon
ii lj

as possible. Thus r. should be set to zero whenever lj leaves the basis,

not only the lower bound, but kli itself should be reset.

Since each variable in 2i is nonbasic at the start of phase II, the

complementarity restrictions on 2I and cause no problems in setting up for

phase II.

Comments in the modified LINOPT code referring to pivoting restrictions are

given in terms appropriate to the dual problem (4) with phase II bounds. A

further thing to note is that the negation of p1 and P2 in the objective row

(PT _T bT bT
p1  - 2  b1  b2

is handled internally, so that this vector should be passed as

[PT PT bfT b T%

13/14
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CHAPTER 2

USER'S NOTES

WOLFQP is a FORTRAN Language computer code written to solve problem (1) with

the method described in the previous section. The code is a modified version

of LINOPT which takes advantage of the structure in the Quadratic Programming

problem to reduce the storage required. Also the user is only required to input

the QP problem, it is translated by WOLFQP into the Linear Programming Problem.-

Communication with the calling program is accomplished through the calling

statement. The formal parameters are described thoroughly in the internal

documentation (See Appendix A). This section therefore will only attempt to

clarify some of the murkier details.

The scratch array SCR must be dimensioned at least N2 + 13N + 6

(N - N1 + N2 + Ml + M2 ; where NI = Number of sign constrained variables,

N2 - Number of sign unconstrained variables, M, = Number of unequality

constraints, M2 = Number of equality constraints). Failure to do this will cause

memory to be overwritten and result in indeterminate output. The scratch array

is divided into the internal arrays required of LINOPT. The correlation between

these internal variables and positions in SCR are detailed in the internal

documentation (See Appendix A). For detailed descriptions of the internal

variables see reference [i).

It is noted that the unknown vector [c] in problem (1) has sign constrained

xl and sign unconstrained x2 variables. For ease of notation the constrained and

free variables are grouped separately. WOLFQP does not require the user to so

order the variables. The integer vector IND allows the user to permute the

variables without permuting the Q, Al and A2 matrices. This allows the user

to form the matrices in a convenient manner.

The First N1 locations of IND contain the indices for which there are sign

constraints. Locations N1 + I..., N1 + N2 contain the indices for the free

variables.

15
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Also it may be inconvenient to reform the constraint matrices for a call to

WOLFQP. As an exanple the user may wish to call WOLFQP with only some of the

constraint rows active. Locations N1 + N? + I .... NI + N? + Ml of IND contain

the indices of the active rows, if any, in the inequality constraint matrix Al.

In the same manner locations NI + N2 + Ml + I... NI + N2 + Ml + M2 of IND contain

the indices of the active rows, if any, in A2; the equality constraint matrix.

If the value of the objective function is desired the user should set the

formal parameter VALUE to a non-zero value. This results in the calculation

of the objectives function value at the optimal solution. The Scalar C is ignored

except in this calculation.

Two inputs which control the algorithm are ITMAX and NINVT, corresponding'

to IPASS (2) and IPASS(8) respectively. ITMAX is the iteration limit. Upon

completion of ITMAX iterations control is returned to the calling program with

IERR (IPASS (4)) set to 2. All internal storage has been saved. If desired

WOLFQP may be recalled and computation continued by calling WOLFQP with FLAG

set to true. No other change is necessary or advised.

On output the optimal distribution is placed in the array Y. The value

is calculated, if desired. The iteration number and error indicator are stored

in the appropriate positions of IPASS (See Appendix A). Also if the user desires

to look at the internal variables SCR contains these values.

Other error conditions (IERR = 1,3,4+) must be corrected before re-calling

WOLFQP. For these conditions the tableau must be re-initialized. (Flag set to

False).

An upper limit on ITMAX should be between 5*N and 10*N. Some problems may

take more; most should take fewer iterations. Practically ITMAX should be set so
that an inordinate amount of CP time is not consumed before the problem formulation

has been thoroughly checked.

NINVT controls the re-inversion of the tableau. Since succeeding inverses
Li are formed as perturbations of previous inverses truncation error can

accumulate in the inverse. To remedy this situation the inverse must be

re-formed. Every NINVT iterations the inverse will be reformed. To avoid

unnecessary calculations this should not occur too frequently. The recommended

value is between 2 x N and 3 x N.

The final input controlling calculations is EPSI. This is used to control

zero tolerance. Zero tolerance is important in two parts of the algorithm.

Tableau entries which are less than EPSI in mignitude are treated as zero.

16
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Their values are considered to be truncation error. Thus for this purpose EPSI

is set to the truncation error of the machine.

The other spot where zero tolerance is involved is when constraint violations

are checked. Constraint violations less than EPSI are treated as zero. This

is also to avoid truncation error but the user must be careful. If the problem

is scaled such that entries in the tableau are less than EPSI their entries

will be ignored. For this purpose EPSl must be on the order of the smallest

entries in the tableau (Q, Al and A2). The input value for EPS1 should be the

minimum of these two values.

The major modification to LINOPT occurs in PIVROW. This subroutine chooses

the incoming basic variable which is required to meet the complementary slackness

condition. Flags contained in the internal array BASIC are used to facilitate

this checking.

Each word in the BASIC array contains seven bits used as flags and if the

complementary slackness condition applied to the variable, (a complementary index).

Bits are used to reduce the storage requirement. The layout of each basic word

is described in the internal documentation of SETQP. (See Appendix A).

The Bit operations OR, AND, SHIFT and COMPLEMENT are required to access

and define the flag bits. These operations are described more thoroughly in

machine dependencies (Appendix C).

The Flag Bits are also used in DSINP. In DSIMP the basic or non-basic bit is

set as appropriate and bounds are reset, if applicable, on variables leaving

the basis.

17 1
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CHAPTER 3

EXAMPLES

A short zest program appears at the end of the source listing. (Appendix A)

The problem is defined by the NAMELIST inputs. Mnemonic names are used in the

NAMELIST which are then loaded into the IPASS array. The following examples

list the NAMELIST inputs and the output resulting from a subsequent call to QPTAB.

Example 1.

This problem illustrates the basic use of the algorithm.

min 1/2 [xl, X21 ] Lx1][6O~

xl, x 2 > 0

xl< 2

x2 1

x+ x2 -2

This problem requires the following inputs

$ IN
EPS = l.E-10,
FLAG - FALSE.,
IND = 1,2,1,2,1,
N = 5,
NCON - 2,
NUNC 0,
NINEQ = 2,

NINV -3000,
ITMAX:=10

1 Q(1,2) = 2.,4.,
Al - 1., 0.,
Al(1,2) = 09.
A2(l,l) - 1.,
A2(1,2) = 1.,
OBJ -=.0,.1,.
C = 0.,
VALUE I .,

$END

19
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output of QPTAB after call to WOLFQP

$OUT

N =5,

NCON =2,

NUNC =0,

NINEQ = 2,

NEQ = 1,

NINV = 3000,

ITMAX = 100,

ITER = 2,

IERR = 0,

C = 0.0,

VALUE = .8E+01,

$END

Q
.4000E+01 -. 2000E+01

-. 2000E+01 .4000E+01

P

.6000E+01 0.

Al*X Bi Al

.1000E+01 .2000E+01 .1000E+01 0.

.1000OE+01 . l000E+0l 0. .1000OE+01

A2*X B2 A

.2000E+O1 .2000E+01 .1000E+01 .1000E+01

x

.1000E+401 .l000E+0l

Basically the output reprints the inputs with the addition of the solution

vector X = 1,.,the value of the function VALUE = 8., (VALUE on input was

non-zero). The number of iterations required ITER = 2, the error indicator

* IERR =0 indicating solution and each constraint is evaluated as a check.

(See Al*X and A2*X columns.

20
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Example 2.

This example illustrates how sign constraints can be written implicitly

or explicitly. The inputs differ slightly. The explicit version requires more

iterations.

min 1/2 [xl, x2, X3, x41 'l 0 6 1 lrxll
0o 4 6 4 1x21
16 6 6112 x

11 4 12 1003 x4i
+ Ii0, 0, 0, -1] X1]

x1 1 x2, x3, x 4 > 0

Inputs for Problem 1

$ IN
EPS = l.E-l0,
FLAG .FALSE.,
OBJ = 10*0.,

N =4.,

NCON =4,

NIJNC 0,
NINEQ = 0,
NINV 2000,
ITMAX = 100,
Q(1,1) = 1,.6,.
Q(1, 2 ) 0.4,6,.

Q(1,3) =6.,6.,61.,12.,
Q(1,4) 1 .,4.,12.,100.,
OBJ - 0. ,0.,0. ,-1.,

VALUE = 1.,
IND - 1,2,3,4,I $END

One notes that the sign constraints are entered implicitly and are the only

constraints.

21
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:1 Outputs:

$OUT

N =4,

NCON -4,

NUNC -0,

NINEQ - 0,

NEQ = 0,

NINV = 2000,

ITMAX = 100,

ITER - 1,

IERR - 0,

C = 0.0,

VALUE = -. 5j --- ,

$END

Q
.l000E+0l 0. .6000E+01 .1000E+01

0. .4000E+01 .6000E+01 .4000E+01

*.6000E+31 .6000E+01 .6100E+02 .1200E+I02

* lOOOE-9-01 . 4000E+01 . 1200E+I02 .1000OE+03

p
0. 0. 0. -. 1000E+01

X
0. 0. 0. .lOOOE-O1

Note only 1 iteration is required.

The following inputs solve the same problem, but xand x2are implicitly

constrained. x3 and x4 have explicit constraints in the Al matrix.

Inputs:

$IN
EPS - l.E-l0,
FLAG = .FALSE.,
Al - 300*0., A2 =300*0., Q-900*0., OBJ =30*0.,
OBJ = 10*0,

N =6,
NCON =2,

NUNC 2,
NINEQ =2,
NINV =20009

ITMAX =100,
Q(1,1) = 1,.6,.

22
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Q(1,2) = 0,.6,.

Q(1,3) -6.,6.,61.,12.,
Q(1,4) - 1.,4.,12.,100.,
Al(l,l) =l,-O,-

A1(1,2) 0.= .0,.

A1(1,3) = .Ol,.
Al(1,4) 0.0,.-.
OBJ -= O,---
C = 0.,
VALUE - 1.,
IND = 1,2,3,4,3,4,

$END

output:

$OUT

N =6,

NCON =2,

N7JNC =2,

NINEQ =2,

NEQ =0,

NINV =2000,

IMAX = 100,

ITER = 3,

IERR - 0,

C w 0.0,

VALUE - -.5E-02,

$END

Q
.1000E+01 0. .6000E+01 .1000E+01

0. .4000E+01 .6000E+01 .4000E+01

.6000E+01 .6000E+01 .6100E+02 .1200E+02

.1000E+01 .4000E+01 .1200E+02 IOOO0E+03

p

0. 0. 0. -. 1000E+01

A1*X B1 Al

0. 0. 0. 0. -.l000E+01 0.

-.1000E-0l 0. 0. 0. 0. -. 1000E+01

X

0. 0. 0. .1OOE-Ol

Note the solution is the same as tht implicitly constrained example but this

solution required 3 interations instead of 1 the problem has increased 
in size

23
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from N = 4 to N f 6 thus requiring additional storage.
If one wishes to continue in this vein, all sign constraints can be made

explicit. The dimension of the problem becomes N = 8. The same solution now

requires 7 iterations. The reader may verify this if desired.

Example 3

This is an example displaying the restart capabilities of the code. Since

the Q matrix is the identity this is a constrained least squares problem of a

particularly simple type. By following the directions in Appendix B the user can

eliminate the need to store the identity matrix in memory.

This problem arises as a sub-problem of the feasible direction method. What

is required is to find the direction of steepest descent subject to the binding

constraints. The feasible direction method can at times require many constrained

gradients to be calculated. The constraint matrix is usually full throughout

the process but which constraints are binding depend on the given position where

the constrained gradient is to be calculated.

This motivates the use of the linked list IND. First to indicate in the first

N1 positions the indices of the sign constrained variables. In the following

N2 positions the indices of sign unconstrained variables. Thus the variables

need not be ordered constrained followed by unconstrained. The next M1 positions

of IND are filled with the row indices of the active inequality constraints and

finally the last M2 positions are filled by the indices of the active equality

constraints.

Thus for the feasible direction method the full constraint matrix is formed

once. Afterward only the row indices of the matrices must be manipulated to

pass the current constraint set. Note the objective row containing the right

hand side of the constraints must be reformed each time it changes.

The gradient projection problem can be stated:

min 1/2 < - g(x), - g(x) >

where g(x) is the gradient at x and A is the constrained gradient.

Subject to

>i d for all xi =0

Maintaining xi as non-negative
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A1  < 0

A2 g=0

where for the gradient project problem A, and A2 are the constraints matrices on

K.

Inputs

$IN
EPS - I.E-10
FLAG = .FALSE.,
C = 0.,
VALUE - I.,
Y - 26,
NCON - 12,
NUNC = 8,
NINEQ - 4,
NINV - 3000,
ITMAX - 100,
Q = 900 *0.,
Q(1,1) = 1.,
Q(2,2) 1 1.,
Q(3,3) I 1.,
Q(4,4) = 1.,
Q(5,5) = 1.,
Q(6,6) I 1.,
Q(7,7) I 1.,
Q(8,8) = 1.,
Q(9,9) = 1.,
Q(10,10) 1 1.,
Q(1,1l) = 1.,
Q(12,12) - 1.,
Q(13,13) I.,
Q(14,14) = 1.,
Q(15,15) - I.,Q(16,16) - 1.,

Q(17,17) - 1.,
Q(18,18) = 1.,
Q(19,19) 1.,
Q(20,20) 1.,
Al - 300*0.,
A1(1,1) =i.,

A1(1,2) 1.
Al(1,3) 1.,
A1(1,4) 0.1.,
A (l,5) o.J.,
Al(1,6) 0.=l.,
A1(1,11) 2*0.,i.,
A1(1,12) 2*0.,1.,
Al(1,13) 2*0.,1.,
A1(1,14) 3*0.,.,
AI(1,15) 3"0.,1.,
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Al(1,16) 3*.,.
A2(1,1) =300*0.,

A2(l,l) 1.,
A2(1,2) =1.,

A2(1,3) =1.,

A2(1,4) =1.,

A.2(1,5) I .,
A2(1,6) =1.,

A2(1,7) = 1.,
A2C1,8) = 1.,
A2(1,9) = 1.,
A2(1,10) = 1.,
A2(1,11) = O,.
A2C1,12) = 0.4l.,
A2(1,13) = 0,.
A2(1,14) = O,.
A2(1,15) = 0,.
A2(1,16) = O,.
A2(1,17) = 0,.
A2(1,18) = O,.
A2(1,19) = O,.
A2C1,20) = O,.
OBJ = -1. ,-.566,-.8187,-.9927,--.8187,-.8187,-.8047,-.7800,-.9643,

IND =2,3,5,6,8,10,11,12,13,18,19,20,1,4,7,9,14,15,16,17,1,2,3,4,1,2,
$END
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Note the constraint matrices. The unequality constraints are groups of

three consecutive variables. The equality constraints are groups of ten

consecutive variables. Also 26 iterations were required to determine the

solution.

This next problem is identical to the previous but instead of using the

permutation indice the matrices have been reformed. Sign constrained variables

have been ordered first followed by sign unconstrained variables.

If this must be done many times for a given constraint tableau one can see

a considerable work would be required. Also ITMAX has been set to 5.

Inputs:

$IN
EPS = l.E-10,
FLAG - .FALSE.,
iND - ,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,1,2,
C = 0.,
VALUE = I.,
N =26,
NCON = 12,
NUNC =8,
NINEQ -4,
NINV = 3000,
ITMAX -5,
Q = 900 *0.,
Q(1,1) =1.,

Q(2,2) =1.,

Q(3,3) I .,
Q(4,4) =1.,

Q(5,5) =1.,

Q(6,6) 1.,
Q(7,7) I .,
Q(8,8) =1.,

Q(9,9) 1.,
Q(10,l0) = 1.,
QC1l,ll) =1.,

Q(12,12) =1.,

Q(13,13) =1.,

Q(14,14) = .,
Q(15,15) =1.,

Q(16,16) l .,
Q(17,17) =1.,

Q(18,18) = .,
Q(19,19) =1.,

Q(20,20) l .,
Al - 300*0.,

Al(l,2) =1.,

Al(l,3) I.
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A1(1,4) - .,.
*A1(1,7) -= *.,.
*A1(1,8) = 20,.

Al(1,9) -= *.,.
A1(1,13) = 1.,
A1C1,14) -= .,.
A1(1,17) = *.,.
A1(1,18) 3*.,.
Al(1,19) 3*.,.
A2(l,l) - 300*0.,
A2(1,l) = 1.,
A.2(1,2) - 1.,
A2(1,3) -1.,
A2(1,4) = 1.,
A2(1,5) = 1.,
A2(1,6) = 1.,

A2C1,7) = . ,
A2(1,8) = O,.
A2(1,9) -= ..
A2(1,10) = O,.
A2(1,11) = . ,
A2(1,12) = O,.
A2(1,13) = 1.,
A2(1,14) = 1.,
A2(1,15) = 1.,
A2(1,16) = 1.,
A2(1,17) = 0.4l.,
A2(1,18) = 0,.
A2(1,19) = 0.4l.,
A2(1,20) = . ,
OBJ = -.8566,-.8187,-.8187,-.8187,-.78,-.7701,-.0659,-.0221,-.0130,

$END
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Note IERR returns equal to 2 indicating the iteration limit has been reached.

To continue we call WOLFQP changing MAXIT to 100. No other change is necessary.

Inputs:

$ IN
EPS - i.E-10,

* FLAG = .TRUE.,
IND -l,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,1,2,
C = 0.,

* VALUE = 1.,
N =26,
NCON = 12,
NUNC = 8,
NINEQ = 4,
NINV = 3000,
ITMAX = 100,
Q = 900 *0.,
Q(l1l) =1.,

Q(2,2) =1.,

Q(3,3) =1.,

Q(4,4) I .,
Q(5,5) I .,
Q(6,6) =1.,

Q(7,7) =1.,

Q(8,8) - 1.,
Q(919) = 1.,Q(010 .
Q(10,10) =1.,

Q(12,12) =1.,

Q(13,13) =1.,

Q(14,14) I .,
0(15,15) =1.,

Q(16,16) =1.,

Q(17,17) =1.,

Q(18,18) I .,
Q(19,19) =1.,

Q(20,20) =1.,

Al - 300*0.,
A1(l,l) =1.,

A1(1,2) =1.,

Al(l,3) =~ .
Al(1,4) = ..
Al(1,7) 2*.,.
A1(1,3) =*.,.

Al(1,9) =*..

A1(1,13) =1.,

Al1,14) = .l.
Ai(1,17) 30,.
Al(1,19) =*.,.

Al(1,19) 3*.,.
A2(1,l) =300*0.,

A2(1,l) I .,
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A2(1,2) -1.,
A2(1,3) - 1.,
A2(1,4) -1.,
A2(1,5) -1.,
A2(1,6) - 1.,

A2(1,7) -
A2(1,8) -O,.
A2(1,9) 0 .,].,
A2(1,10) - 0.,].,
A2(1,11) -= .,.
A2(1,12) - . ,
A2(1,13) - 1.,
A2(1,14) - 1.,
A2(1,15) - 1.,
A2(1,16) - 1.,
A2(1,17) -= .,.
A2(1,18) 0 .,].,
A2(1,19) -= .
A2(1,20) = 0.,]..,
OBJ - -.8566,-. 8187,-. 8187,-8187,-. 78,-. 7701,-.0659,-.0221,-.0130,

END
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After unscrambling the output so that it corresponds to the first problem

of this example set one can see the answers are the same.

Example 4

Example 3 illustrated a constrained least-squares problem which consisted

of finding a Euclidean projection onto a cone. More general least-squares

approximation problems lead, by the same algebraic manipulations which yield

the normal equations, to quadratic minimization problems with the Q - matrix

not equal to the identity.

Given k values HIl,..., Hk, we wish to find n values xl,..., xn which minimize
1/2 k 2 where hi = n

i= iln C iJ xj - Hi, the i-th residual, subject to upper

and lower bounds on the variables xj, j=l,... ,n. In matrix terms we can define

a vector residual h =CX - H, where C is kx n. Expanding the quadratic gives

us the problem:

minimize 1/2 xT(CTC)X -(HTC)x + 1/2 HTH

subject to EJ fu

where u and k are vectors of upper and lower bounds. Here cTc corresponds to

Q, -HTc to p and 1/2 HTH to C. (More general linear constraints could also

be used.)

The following example, for which we are indebted to George Gray of E22,

NSWC, treats the approximation of a given magnetic field. The original data,

unscaled, make all the Q-matrix entries very small (_ 10-12). Since values less

than EPSI in magnitude are set to zero in the tableau calculations, we must

ensure that EPSI is small enough to ensure that no significant Q - matrix entries

are zeroed. We present three cases, one with EPSI 1 10-10 (which bombs), one

with EPS1 - 0, and one with EPSl - 10-10 but with the data rescaled (x divided

by 106, C multiplied by 106) so that this difficulty does not arise.
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APPENDIX B

MODIFICATION FOR PROJECTION PROBLEMS

WOLFQP as written will solve a projection problem. For large problems space

may be reduced by modification to the program.

In the projection problem the Q matrix reduces to the identity. This need

not be stored. The specific modifications are:

WOLFQP

Delete the Do Loop with 130
Replace with

TEMP = TEMP + SCR(IP3 + I + N)

GETROW

Delete Do Loop with 50
Replace with

AROW (J) = AROW(J) + E(KK + JJ)

PSOL

Delete Do Loop with 40
Replace with

X(KI) = X(KI) + X(KK)

By then substituting a dummy argument for Q in the calling Sequence the user

has removed the necessity of storing the identity matrix. Of course the user

may then remove Q and NQD completely from the calling sequence if desired.

93/94

.....J.......



NSWC TR 82-30

APPENDIX C

MACHINE DEPENDENCIES

BIGM Defined by Data Statement in WOLFQP. BIGM represents
machine infinity. For CDC Machines 10100 is used.
This constant clearly depends on the exponent range
available.

BASIC An array used to store internal flags. To reduce space
7 bits of each BASIC word are used to store flags the
remaining bits are required to store an integer. If
the word size of the machine is M bits this integer must
be less than 2M-

7 _1 . For CDC machines this becomes 253-1.
This number 2M - -1 represents the largest problem which
can be solved with this encoding of the algorithm.

Since bit operations are performed on the Basic array certain bit functions

must be utilized.

Octal constants are used to set certain bit patterns in SETQP, DSIMP and

PIVROW. They are either used to set the bit patterns or mask certain bits from

the given word. The octal constants appear only in Data Statements in the

appropriate routines. They appear as integers followed by the letter B. These

are numbers written in Base 8 and must be written with the appropriate

notation and in the appropriate base for the machine.

i.e. 7B = 7 Hex

lOB = 8 Hex

60B = 30 Hex

The Machine functions utilized are:

OR(A,B) - Perform bit by bit logical or

on A,B. The truth table is

0 1

0 0 1
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AND(A,B) Perform bit by bit logical and
on A,B. The truth table is

10 1

0 0 0

1 0 1

SHIFT(A,I) - SHIFT the word I bits. If I is positive SHIFT left I positions.

If I is negative shift right I positions.

i.e. if A contains the following bit pattern

A = 0001011010

then
SHIFT(A,2) = 0101101000

SHIFT(A,-2)= 0000010110

CON1PL(A) - form bit by bit Boolean complement of A.

i.e. if A = 10110

COMPL(A)= 01001

The following library function is required in PIVCOL

RANF(X) - returns a uniform random number, the argument is ignored, in
the function.
The random number is used in an anti-cycling procedure. Some
other method of preventing cycling could be used instead.
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